

global partners in life science transactions

Valuation and Negotiation

May 26th 2011, ASTP-conference, Stockholm

Agenda of Today

- 1. Introduction
- 2. Goals of the Workshop
- 3. Valuation Methods
- 4. Negotiation Framework
- 5. Case Study

Introduction: Anja Zimmermann

Ascenion

- Founded in 2001
- Focus on life sciences
- Marketing of >700 technologies and materials of public research institutions
 - Helmholtz Association
 - Leibniz Association
 - Hanover Medical School
 - TT in the NGFN
 - Mouse Genetics Cologne Foundation

- Team of 22 specialists with multiyear experience and sector specific expertise
 - Technology Managers (Scientists)
 - Analysts
 - Legal / Tax Advisors
- Offices in Munich, Berlin, Brunswick, Hamburg, Neuherberg, Hanover

Anja Zimmermann

- Analyst at Ascenion since 2001
- Focus on life science and economics:
 Biologist (PhD) and business economist
- Based in Munich office

- Responsible e.g. for
 - licensing projects (patented and non patented technologies),
 - Ascenion's spin off portfolio
 - valuation issues (NPV, etc.)

Short Introduction: Ulrich Pessara

Short CV

• 2004 – today: General Partner JSB Partners LP (Managing Director, Zug-

Switzerland)

1999 – 2003: Cofounder / COO of Xantos Biomedicine, Munich

1991 – 1999: Director Molecular Medicine, Boehringer Mannheim /

Hoffman – La Roche

1981 – 1991: PhD in Immunology/Molecular Genetics (Hanover,

Cologne, Heidelberg, Strassbourg)

Overview on JSB Partners

- International transaction broker for the healthcare community doing licensing, M&A and financing transactions
- Deal volume since 2008 > US\$ 2 billion
- Major offices in New York, Boston, Munich and Zürich
- Spin-off from MPM Capital/Boston in 1999

Introduction: Jörn Erselius

Short CV

2005 – today: Managing Director, Max Planck Innovation, Munich

• 2011 RTTP (Registered Technology Transfer Professional, ATTP)

2007 - 2011: Board Member ASTP

2002 – 2004: MBA Management, University of Applied Sciences

Deggendorf

1991 – 2005: Patent- and Licensing Manager, Max Planck Innovation

1988 – 1991: PhD in Developmental Biology/Molecular Genetics

(Heidelberg, Göttingen)

Overview Max Planck Innovation

- technology transfer agency of the Max Planck Gesellschaft (largest basic research organization in Germany)
- 130-150 invention disclosures / 80 patent applications per year
- license income/year: € 16-17 million (US\$ 22-24 million)
- 90 Spin-offs since 1990

Agenda of Today

- 1. Introduction
- 2. Goals of the Workshop
- 3. Valuation Methods
- 4. Negotiation Framework
- 5. Case Study

Introduction: Goals of This Workshop

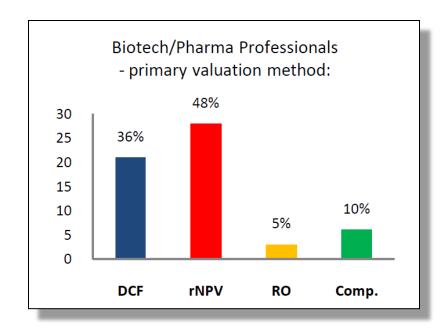
Valuation

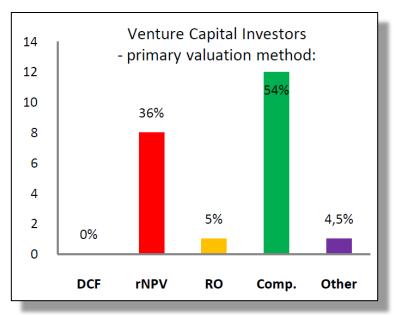
- Understand several valuation techniques
- Be able to use rNPV calculation technique
- Get overview on relevant parameter required for rNPV valuation
- Develop valuation of "Case Study"

Negotiation

- Understand negotiation processes in Biotech partnering
- Respect "don'ts" and "dos"
- Avoid major mistakes in Biotech partnering

Agenda of Today




- 1. Introduction
- 2. Goals of the Workshop
- 3. Valuation Methods
- 4. Negotiation Framework
- 5. Case Study

Project Valuation – What Pharma/Biotech or Venture Capital Professionals Use

Source: Biostrat Biotech Consulting (www.biostrat.dk)

Potential Valuation Methods

- "rule of the thumb"
- 25% rule
- Benchmarking
- Development costs
- Auction
- Sales Multiples
- Comparables
- DCF (Discounted cash flow)
- NPV (Net Present Value)
- Decision Tree
- Real Options

Relevant Valuation Methods

- "rule of the thumb" common but not very professional
- 25% rule based on out dated presumptions
- Benchmarking ok for some applications
- Development costs not applicable for governmentally funded research organisation
- Auction hoped for but rarely if ever happening
- Sales Multiples IF there are sales
- Comparables good for real estate not good for biotech
- DCF (Discounted cash flow) leaves out too many risks in our risky field
- NPV (Net Present Value)
- Decision Tree required data in the biotech field can almost never be provided
- Real Options too complicated and not widely accepted

Risk-Adjusted Net Present Value Calculation

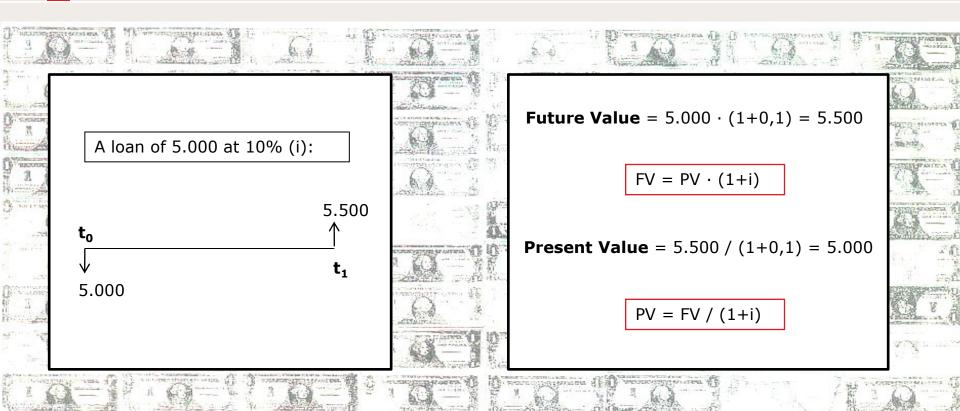
Known at least since the 19th century

$$rNPV = -I_o + \sum_{t=1}^{T} \frac{rCF_t}{(1+r)^t}$$

$$I_o = \text{Investment into the project at time } 0 \ (=CF_o)$$

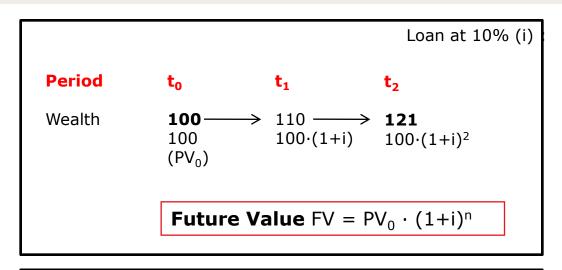
$$rCF_t = \text{Risk adjusted cash flow at time } t$$

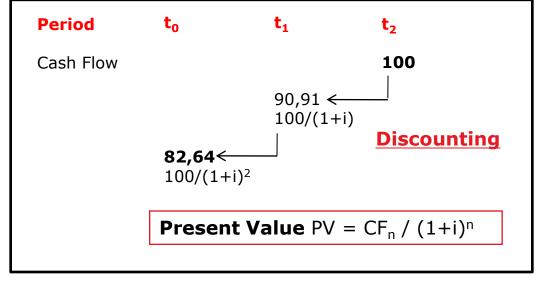
$$r = \text{Discount rate}$$


$$T = \text{Endpoint of the project (if today is } t = 0, T = \text{duration of the project)}$$

- Most common valuation method in Pharma/Biotech
- Important tool when negotiating partnering agreements
- Requires knowledge of
- All costs required
- All income to be generated
- All risks involved
- Inflation rate / Cost of capital
- Therefore beware: "garbage in, garbage out"

Background- Time Value of Money




A dollar in your hand today has more value than a dollar tomorrow

Background – Present Value (Discounting)

Background – Discounted Cash Flow (DCF) Analysis

The value of an asset is the sum of all future cash flows discounted to today

Period	PV	to	t ₁	t ₂	t ₃
Cash Flows		+100	+100	+100	+100
Discount. CF	+348,68	+100	+90,91	+82,64	+75,13

Present Value PV =
$$CF_0 + CF_1 + CF_2 + CF_3 + CF_n$$

 $(1+k)$ $(1+k)^2$ $(1+k)^3$ $(1+k)^n$

Background- Risk-Adjusted Net Present Value ascention

Year	0	1	2	3	4	5	6
Expenses	(\$ 50,000)	(\$ 500,000)	(\$ 10,000)	(\$ 20,000)	(\$ 30,000)	(\$ 20,000)	(\$ 10,000)
Revenues			\$ 100,000	\$ 200,000	\$ 300,000	\$ 200,000	\$ 100,000
Net CF	(\$ 50,000)	(\$ 500,000)	\$ 90,000	\$ 180,000	\$ 270,000	\$ 180,000	\$ 90,000
Probability	100%	50%	50%	50%	50%	50%	50%
Risk adjusted CF	(\$ 50,000)	(\$ 250,000)	\$ 45,000	\$ 90,000	\$ 135,000	\$ 90,000	\$ 45,000
Discount	100%	87%	76%	66%	57%	50%	43%
rpCF	(\$ 50,000)	(\$ 217,391)	\$ 34,026	\$ 59,176	\$ 77,187	\$ 44,746	\$ 19,455
rNPV	(\$ 32,801)						

Praxis – Valuation in Biotech

Clinical Projects are Biotech's Primary Assets

<u>Uncertainties:</u> Time, risk and cost

Parameters for biotechnology

Average risk mitigated Number of clinical-(when beginning the phase): Time to complete: trial subjects:

Preclinical: 10%

 Phase 1: 20%
 Phase 1: 0.5–1 year
 Phase 1: 20–80

 Phase 2: 30%
 Phase 2: 1.5 years
 Phase 2: 100–300

 Phase 3: 3.5 years
 Phase 3: 1,000–5,000

FDA approval4: 81% FDA approval: 1.5 years

Costs:

Phase 1 and 2: Clinical trials (outsourced): \$8,000-\$15,000 per subject

Phase 3: Clinical trials (outsourced): \$4,000-\$7,500 per subject

Animal studies to support phase 1: ~\$500,000 Animal studies to support phase 2: ~\$1 million Animal studies to support phase 3: ~\$1.5 million

FDA approval: \$0.8–\$1.8 million+ (\$300,000 for the Prescription Drug User Fee Act II fee and the remainder for preparation of the New Drug Application (NDA); NDA-preparation costs are highly variable and depend largely on the amount and the quality of data to be presented)

Financials:

Revenue reserved for manufacturing and marketing: 40–60% (choose the high end to justify a reasonable market percentage)

Discount rate (cost of capital for biotech firms1; R&D risk considered separately): 20%

nature biotechnology • VOLUME 19 • SEPTEMBER 2001 • http://biotech.nature.com

Praxis – Using Example Spreadsheets

			PAR	AME.	TERS				
COMPANY NAME		Neklim Bio	tech Co.		PROJEC	T TITLE		Neklin	ned
)rphan Drug (y/n)?		N	Orphan if <200,000 U.S. pa	tients	Financials			\$1.000.000.000	
							Penetration	35%	
Preclinical	Duration	1				Market 0	Frowth Rate	3%	
	Annual Cost		8 Scientists at \$250,000 pe	r scientist				OR	
Likelihood of Reachi	ng Revenue	10%					nt Population		
							e Per Patient		
Clinical Phase 1	Duration	1					Penetration		
	of Subjects		20-80		Patient I	Polpulation (rowth Rate		
	t Per Patient		\$8,000-15,000					AND	
Animal Stud		\$500.000					Market Peak	_	Maximum 4 Years
Annual Overhead (0							scount Rate	15%	
Likelihood of Reachi	ng Revenue	25%	20% for a chemical pharma	ceutical			Royalty Rate	5%	
					Manufacturii	_		60%	
Clinical Phase 2	Duration	2		Yea	ar Patent Protec	ction and Re	venues End	21	
Number	of Subjects		100-300		Annual Ramp (Overhead (C	Other Costs)		
Cos	t Per Patient	\$12.000	\$8,000-15,000	Annual F	Peak Revenue (Overhead (C	Other Costs)		
Animal Stud	lies Phase 2	\$1.000.000							
Annual Overhead (C	Other Costs)								
Likelihood of Reachi	ing Revenue	35%	30% for a chemical pharma	ceutical					
Clinical Phase 3	Duration	3							
	of Subjects	2000	1,000-5,000						
	t Per Patient		\$4,000-7,500						
	lies Phase 3	\$1.500.000	#+1000-1 1000						
Annual Overhead (φ1.300.000							
Likelihood of Reachi		72%	67% for a chemical pharma	ceutical					
Encollious of Reachi	ng rtevenue	r 2 70	or 70 for a cricinical priarilla	ccutical					
Approval	Duration		0.5-1 for fast-track						
FDA Fee	s (PDUFA II)	\$309.647							
NDA/BLA Prepa	aration Fees	\$1.000.000	\$500,000-1,000,000						
Annual Overhead (0	Other Costs)								
Likelihood of Reachi	ing Revenue	81%							

Praxis - Pros & Cons

Pro:

- Need for data research
- Creates transparency
- Easy to use

Con:

- Only as good as input
- Very sensitive to discount rates, peak sales and risks!

Fact to Consider

- rNPV very much dependent on input data; so do your analysis well
- rNPV very much dependent on three variables accounting more than 20% variability each:
- Discount factor,
- Sales numbers and
- Risk factors for the individual development phases
- So whatever you calculate today, will be wrong in the future!!

Predicting the Future: Famous But Wrong Predictions by the Experts

- "Louis Pasteur's theory of germs is ridiculous fiction". -- Pierre Pachet, Professor of Physiology at Toulouse, 1872
- "Heavier-than-air flying machines are impossible." -- Lord Kelvin, president, Royal Society, 1895.
- "I think there is a world market for maybe five computers." -- Thomas Watson, chairman of IBM, 1943
- "There is no reason anyone would want a computer in their home." -- Ken Olson, president, chairman and founder of Digital Equipment Corp., 1977
- "640K ought to be enough for anybody."
 -- Bill Gates, 1981
- "\$100 million dollars is way too much to pay for Microsoft." -- IBM, 1982

Prediction of Drug Sales Potential

Product	Manufacturer	Use	Estimated Peak Sales (2004)	Sales 2009*
Avastin	Genentech	Cancer	3000	5900
Exanta	AstraZeneca	Thrombosis	1300	0
Alvesco	Altana, Aventis	Asthma	1200	85
Arcoxia	Merck	Osteoarthritis	2500	377
Caduet	Pfizer	Hypertension, hypercholesterolemia	1090	590
Cymbalta	Lilly	Depression	2200	3000
Zocor/Zetia	Merck, Schering-Plough	Cholesterol	3000	6600
Genasense	Genta	Malignant melanoma	900	0
Lyrica	Pfizer	Neuropathic pain	2000	2900
Spiriva	Boehringer Ingelheim, Pfizer	Pulmonary disease	1340	3300

M. Gröppel, 4SC (derived from Humphreys, A. (2004) 'Future Blockbusters', MedAdNews, January, 1–12; *Peak Sales 2009 according to Medtrack

Agenda of Today

- 1. Introduction
- 2. Goals of the Workshop
- 3. Valuation Methods
- 4. Negotiation Framework
- 5. Case Study

Negotiation: Essentials of a Successful Partnering Process

 Preparation is of key importance – 	Understand interests on the table
--	-----------------------------------

- Selling documentation
- Unique selling point / competitive advantage
- Define clear process timelines Internal and external coordination
 - Generation of competition
- Follow process and timelines and Establish "give and take" scenario always keep control
 - Generate competition
- Establish trust

 Never oversell
 - Focus on involved persons
 - Proactively present weak spots and offer solutions
- Generate win-win solutions For most deals, value generation starts at closing
 - Stay involved in further development

Negotiation: Managing a Successful Partnering Process

INITIAL CONTACT WAVE

Follo

Dev

- · App CONFIDENTIAL PHASE

Close

Mana

Esta

Model value of alternative bids

TERM SHEET PHASE

- Understand incoming offers
- Compare incoming offers
- Prioritize offers for decision making
- Confirm capabilities of interested parties
 - Receive capability presentations
 - Understand future plans with asset(s)
- Support due diligence
 - Enable data exchange
 - Keep track record for all exchanged information (reduces later reps and warranties in licensing contracts)
- Steer towards appropriate confirmed offers
 - Keep all parties at similar development level
 - Receive offer at the predefined milestone

- ____
- Develop Data room
 - Keep data avai
 - Define clear ac
 - Be present and

Partnering & Negotiation: Key Acpects

- When?
- Where?
- Which team?
- planning
- attitude and language (cross cultural topics, how to work under pressure, etc.)
- Point by point
- Listen
- Prepare a draft + sum up negotiations in writing
- Options for mutual gain
- Know your BATNA (best alternative to a negotiated agreement)

Agenda of Today

- 1. Introduction
- 2. Goals of the Workshop
- 3. Valuation Methods
- 4. Negotiation Framework
- 5. Case Study

Case study

- Biopharmaceutical drug, inhibiting angiogenesis ("Bludex")
- Ready to enter phase I
- Potential indications: Colon Carcinoma (breast ca. as upside potential)
- 10% market reach on US market
- US\$ 30,000 annual treatment costs
- Annual incidence Colon Ca. in US: 120.000 (today)
- IP coverage until 2025
- Discount factor: 20%
- Questions to be answered:
- What will be the peak sales potential in USA?
- What is the current rNPV for USA?
- What is happening when you have to half the market price?

Case study cont.

- For a general overview: <u>http://web.mit.edu/biostrategy/files/031204_DiMasi_Slides.ppt</u>
- For incidence/mortality numbers e.g. http://globocan.iarc.fr/
- For clinical trials: e.g. http://clinicaltrials.gov/ct2/info/understand
- For discount factors e.g: <u>http://www.avance.ch/newsletter/docs/Discount_1.pdf</u>

Thank You!

